И.Б. Изевков

Закономерности размещения месторождений углеводородов в зоне сочленения Ямальской, Гыданской и Надым-Пурской областей Западно-Сибирской мегапровинции

Арктические районы Западно-Сибирской нефтегазоносной мегапровинции характеризуются разной степенью геолого-геофизической изученности. Один нефтегазоносные области (НГО) и районы (НГР) в значительной степени опоискованы, другие находятся на начальной стадии поисково-разведочного процесса. Относительно хорошо изучен Газовский п-ов, в меньшей степени – п-ов Ямал, наименее изученной территорией является сама северная и труднодоступная Гыданская НГО.

Зона сочленения (ЗС) Надым-Пурской, Ямальской и Гыданской НГО (рисунок) характеризуется различной нефтегазоносностью по разрезу и площади. В результате поисково-разведочных работ (ПРР), проведенных в этой зоне, установлен достаточно широкий возрастной диапазон нефтегазоносности. В статье рассмотрены закономерности размещения 22 месторождений, открытых в ЗС, суммарные разведанные запасы газа по которым составляют 6,1 трлн м³ (жидкие УВ превышают 1 млрд т). Промышленные скопления углеводородов (УВ) обнаружены в отложениях от кровли сеномана до палеозойских включительно. В изучаемой зоне выделяются следующие нефтегазоносные комплексы (НГК): юрский (в составе нижне-среднеюрского подкомплекса), ячимовский, неоком-аптский, альб-сеноманский. Кроме того, на Новопортовском месторождении, которое характеризуется максимальным этажом нефтегазоносности, на глубинах 2,6-4 км в коре выветривания палеозойского фундамента выявлены газоконденсатные залежи, а также получены притоки газа из коренного палеозоя (на северо-востоке площади). Распределение залежей УВ по НГК ЗС представлено в таблице.

Сеноманские отложения регионально продуктивны на всей территории северных районов Западно-Сибирской нефтегазоносной мегапровинции. К ним приурочены крупные и уникальные залежи газа на Уренгойском, Ямбургском, Заполярном и многих других месторождениях. В изучаемой зоне расположены Ямбургское, Парусовское, Северо-Парусовское, Семаковское, Тота-Яхинское, Антипайотинское, Миниховское, Геофизическое, Чугорянское, Северо-Каменомысское, Каменномысское, Каменномысское-море, Обское, Ростовцевское, Нурминское и Новопортовское месторождения с газовыми залежами в сеноманских отложениях. Следует отметить, что в изучаемой зоне на п-ове Гыдан вследствие выровненного рельефа структурной поверхности кровли сеномана скопления газа в сеноманском горизонте выявлены только в половине месторождений, что не характерно для северных районов Западной Сибири. Залежи в отложениях сеномана не были обнаружены на Восточно-Миниховском, Восточно-Бугорном и Трехбугорном месторождениях. На Солетско-Ханавейском месторождении открыта залежь в пласте ХМ, ярпогной свите (альб). Принцип заключается в отсутствии замкнутых локальных структур по кровле сеномана.
Обзорная схема зоны сочленения Ямальской, Гыданской и Надым-Пурской НГО

Все сеноманские залежи северных областей Западной Сибири связаны со структурными ловушками (локальными поднятиями), высота их зависит от амплитуды структуры по замыкающей изогипсе. По типу залежи массивно-пластовые, плоскость газово-дебитного контакта близка к горизонтальной или имеет небольшой наклон, преимущественно в северном направлении. В изучаемой ЗС в сеномане отмечается наличие элементов тектонического экранирования. На месторождениях Парусовое, Северо-Парусовое, Семаковское, Геофизическое залежи сводовые массивные, осложненные тектоническими нарушениями. Наличие тектонически-экранированных месторождений и залежей в ареале Обской и Тазовской губ связано с отрицательными структурами типа грабенов.

Аптский подкомплекс представлен породами континентального и прибрежно-морского
Распределение залежей УВ по нефтегазоносным комплексам зоны сочленения Ямальской, Гыданской и Надым-Пурской НГО
Западно-Сибирской мегапровинции

<table>
<thead>
<tr>
<th>Продуктивные комплексы и подкомплексы</th>
<th>п-ов Ямал</th>
<th>Обская и Тазовская губы</th>
<th>НПТР</th>
<th>п-ов Гыдан</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Нижнекамское</td>
<td>Ростовское</td>
<td>Хатангское</td>
<td>Каменноzemельское</td>
</tr>
<tr>
<td>Сеноман</td>
<td>Г (1)</td>
<td>Г (1)</td>
<td>Г (1)</td>
<td>Г (1)</td>
</tr>
<tr>
<td>Альб</td>
<td>Г (1)</td>
<td>Г (1)</td>
<td>Г (1), ГК (3)</td>
<td>Г (1)</td>
</tr>
<tr>
<td>Неком</td>
<td>ГК (3)</td>
<td>ГК (7)</td>
<td>ГК (1)</td>
<td>ГК (1)</td>
</tr>
<tr>
<td>Неоген</td>
<td>ГК (1)</td>
<td>ГК (1)</td>
<td>ГК (1)</td>
<td>ГК (1)</td>
</tr>
<tr>
<td>Галанжин-берриоз</td>
<td>ГК (2), ГКН (10)</td>
<td>ГК (7), Н (9), ГКН (1)</td>
<td>ГК (3), Н (1)</td>
<td>ГК (2)</td>
</tr>
<tr>
<td>Нижний юрский</td>
<td>ГК (3), ГКН (5), Н (2)</td>
<td>ГК (1)</td>
<td>ГК (1)</td>
<td>ГК (2)</td>
</tr>
<tr>
<td>Палеозой</td>
<td>ГК (2)</td>
<td>ГК (1)</td>
<td>ГК (1)</td>
<td>ГК (1)</td>
</tr>
</tbody>
</table>

Заметки:
- Открытые залежи
- Непромышленные притоки УВ (плейсто нефти)

Проблемы ресурсного обеспечения газодобывающих районов России до 2030 г.

№ 5 (16) / 2013

генезиса. Залежи УВ в отложениях пласта открыты на Нурминском, Ростовцевском, Ново-
портовском, Геофизическом, Солетское-Хано-зьском, Восточно-Бугорном, Миниховском, Восточно-Миниховском, Северо-Парсовом и
Парсовом месторождениях. Ловушки преимущественно структурного и литологического типа.
Покрышкой служат глинистые отложения нижнельского возраста.

Найбольшее количество продуктивных пластов в комплексе установлено в северных районах Ямальской и Гыданской НГО. Так,
в Мальгинском и Тамбейском НГР число продуктивных пластов в подкомплексе колеблется от
10 до 22, достигая максимума в Тамбейском НГР. Залежи по газовому составу УВ газо-
вые и газонефтяные, в нижней части комплекс — газоконденсатные. Найболее крупные по
запасам газа залежи приурочены к верхам та-
ногипсовой свиты. На Большаненковском и Хара-
сюйском месторождениях с пластами ТП1-4
связаны уникальные по запасам залежи газа.

В юго-восточном направлении от Тамбей-
ского НГР (район Обской и Тазовой губ) в сторону Мессовского порога происходит
опечанивание разреза танногипсовой и ярпс-
ской свит, сокращается количество зональных
глинистых покрышек и, как следствие, умень-
шается число газонефтяных резервуаров.

На границе фацальных зон Гыданской,
Ямальской и Надым-Пурской НГО (Мессовс-
кий НГР) отмечается отсутствие выдержанных
зональных глинистых покрышек, которые мог-
ли бы являться флойдонурами для газовых
залежей в апте. Выявленная закономерность не
позволяет высоко оценивать перспективность
разреза апских отложений в ареале ЗС.

Из результатов проведенного анализа неф-
тегазоносности апских отложений на терrito-
рии изучаемой зоны следует, что основные за-
пасы газа танногипсовой свиты сосредоточены
на п-ове Гыдан. Количество залежей в апских
отложениях снижается по мере приближения
к Тазовой губе. В ареале Тазовой губы отло-
жения верхней части танногипсовой свиты оце-
ниваются как водоносные.

Неокомский подкомплекс в Ямальской,
Гыданской и Надым-Пурской НГО включает
валанжинские, горетовские и барремские отло-
жения и является основным для жидких УВ в
Западно-Сибирской нефтегазоносной мегапро-
винции. Отложения комплекса накапливались
в морских, прибрежно-морских и континенталь-
ных условиях и представлены ритмичными пе-
реслаиваниями песчано-алевролитовых и гли-
нистых пород. Специфика формирования от-
ложений неокома предопределяет наличие до-
статочно емких пластовых резервуаров в соче-
tании с перекрывающими их непроницаемыми
глинистыми покрышками, что создает условия
для формирования скоплений с промышленны-
ми запасами УВ. Характерной особенностью
верхней части неокома и апта является нали-
чие большого числа пластов уголь мощностью
от 0,1—0,5 до 2—3 м.

На севере Надым-Пурской НГО нефтегазо-
носность неокома наиболее широко представ-
лена на Ямбургском месторождении. Комплекс
объединяет преимущественно морские песчаные
и алеврито-глинистые отложения со-
рымской и тангальской свит. В нижней час-
ти комплекс сложен преимущественно глини-
стыми породами с редкими пластами песчани-
ков и алевролитов. В неокомских отложениях
Ямбургского месторождения залежи УВ выявле-
ны в готервской части разреза (пласты БУ1, БУ1, БУ2, БУ23, БУ4, БУ5, БУ6, БУ7) и валахижные (пласты БУ7, БУ8, БУ9, БУ93, БУ10, БУ12, БУ13, БУ14, БУ15, БУ16, БУ17, БУ18, БУ19, БУ20). Залежи газоконденсат-
ные, пластовые сводовые в основном с литоло-
гическими эксплорами по латерали.

В пределах Ямальской и Гыданской НГО
комплекс представлен песчано-глинистыми
образованиями ахской свиты, отложениями
нижнетанногипсовой подсвиты. Коллекторами
являются плохо выдержанные по площади
и разрезу пласты песчаников и алевролитов
нижнетанногипсовой (ТП1-7—ТП1-9), нововопор-
товской (пласты НП1-1, НП1-2) и ямальской (пласты
БЯ10—БЯ13) толщи. Преобладающий тип лову-
шек — литологические эксплоры в пределах локальных поднятий.

Наибольшее количество залежей УВ в от-
ложениях нововопортовской толщи неокомско-
го НГК выявлено на Нововопортовском место-
рождении. Почти все залежи пластовые, ли-
тологически экскрерированные, смещенные по фа-
зовому состоянию (НГК и ГКН). Покрышкой
для скоплений УВ в отложениях нововопор-
товской толщи служит глиннистая сейсмическая пачка зонального развития (50—70 м). В отложениях
ямальской толщи (БЯ10—БЯ13) и нижней час-
ти танногипсовой свиты (пласты ТП1-7—ТП2-7,
ТП2-7—ТП2-8) залежи УВ выявлены на Ростов-
цевском, Нурминском и Хамбатейском месторождениях.
Продуктивность неокома в пределах изучаемой зоны Гыданской НГО доказана на Геофизическом, Солетско-Ханавейском, Трехбугорном и Чугуровякском месторождениях. На Геофизическом месторождении в отложениях неокома открыто две нефтеносные (ТПп, ТПн) и одна газоконденсатная (ТПг) залежи; на Солетско-Ханавейском – одна газовая (ТПг), и одна газоконденсатная (ТПг) залежи; на Трехбугорном – одна газовая залежь в барремских отложениях (пласт ТПп); на Чугуровякском – три газоконденсатных залежи в отложениях танопчинской свиты (пласты ТПп, ТПп, ТПп). Небольшое количество открытых залежей в низах неокома (выше региональной покрышки) связано с низкой изученностью района глубоким бурением.

На Северо-Парусовом месторождении при испытании скв. 153 в интервале глубин 2625–2633 и 2638–2641 м (пласт ТПп) была открыта нефтяная залежь. На Парусовом месторождении в отложениях комплекса при испытании скв. 1001 в интервале 2680-2685 м – нефтяная залежь пласта БУ (по Гобсаману – БУ,). На Южно-Парусовой площади в скв. 12 при испытании пласта БУ8 в интервале 3407-3419 м (а.о. 3365-3377 м) получен фонтан газа дебитом 46,1 тыс. м³/сут, конденсата – 6,5 м³/сут на штучере 6,1 мм. Открыто одноименное газо- конденсатное месторождение. На Семаковском лицензионном участке, по данным интерпретации ГИС, в скв. 54 с неясным характером насыщения выделены пласти БУ, и БУ. По данным ГИС, на Тота-Яхинском участке пласта БУ, БУ, и БУ (неиспытанные) оцениваются как неясные по характеру насыщения.

Из результатов проведенного анализа нефтегазоносности неокомских отложений на территории изучаемой зоны следует, что размещение залежей УВ в основном связано с литологофациальными условиями образования толщи. Неокомские отложения по особенностям строения существенно отличаются от выше- и нижезалегающих толщ наиболее резко выраженной фациальной и литологической изменчивостью как по разрезу, так и по площади. В северной части Надым-Пурской НГО, представленной уреньгойским типом разреза (сортыхская и тангалаовская свиты), наиболее перспективной является гореирин-валанжинская часть разреза. В изучаемой части п-ова Ямал, представленного Восточно-Ямальным типом разреза с выделяемой в его составе новопоровской толщей, залежи УВ распространены в отложениях барремского, гореиринского и берриас-валанжинского возраста. На Новопоровском и Ростовцевском месторождениях наибольшее количество залежей открыто в отложениях новопоровской толщи (берриас – низы валанжина). В южной части Гыданской области перспективы нефтегазоносности неокомских отложений связаны с отложениями баррема.

Региональная верхнеоросско-валанжинская покрышка осложнена песчано-глинистой АТ. Ачимовский НГК на севере НПП регионально продуктивен, однако на Гыдане и Ямале его распространение проблематично, нефтегазоносность недостаточно изучена.

На сейсмических разрезах горизонты АТ имеют клиноформный рисунок, где пласты АТ и шельфовые пласти соединяются синхронными границами.

Условия формирования осадков и вторичные процессы, происходившие в меловое время, определили своеобразие фильтрационно-емкостных свойств (ФЕС) коллекторов ачимовских отложений. Следует отметить, что зоны наилучших коллекторских свойств не совпадают с ареалами лучшей гранулеметрической отсортированности песчаников. Это свидетельствует о том, что значительное влияние на коллекторские свойства пород оказывают вторичные процессы и трещиноватость.

ФЕС ачимовских коллекторов часто низкие, их проницаемость составляет 0,001–0,01 Д, открытая пористость – 14–18 %, цемент коллекторов глинисто-карбонатный. Следует отметить наличие в отложениях ачимовской толщи аномально высоких пластовых давлений и повышенных температур.

На Ямбургском месторождении в АТ открыто четыре нефтяные (в пластах Ач15, Ач13, Ач11, Ач10) и девять газоконденсатных (в пластах Ач15, Ач14, Ач13, Ач13, Ач12, Ач11, Ач10, Ач10, Ач10) литологически экранирован-
ные залежи. Дебиты газа сепарации изменяются от 25,1 до 92,7 тыс. м³/сут, стабильного конденсата – от 2,16 до 37,14 м³/сут на шайбе 6 мм, штуцере 4,3 мм, нефти – от 0,5 до 25,3 на штуцере 3 мм. Плотность конденсата – 0,733-0,786 г/см³, удельный вес нефти – 0,82-0,84 г/см³. Пластовое давление изменяется в диапазоне от 49,85 до 75,85 МПа, пластовая температура – от 88 до 110,5 °C.

Песчано-глинистые отложения АТ повсеместно перекрываются толщей морских низненеваланжинских глин большой мощности. Песчано-алевролитовые тела не выделяются в широтном направлении, но довольно хорошо прослеживаются в меридиональном, образуя узкие зоны повышенных мощностей песчанников, ориентированных с севера на юг. Ачиновский НГК является одним из наиболее сложнопостроенных объектов разреза.

Характерной особенностью ачиновских отложений является их резкая литологическая изменчивость. Стандартные методы ГИС недостаточно уверенно выделяют эффективные толщины, что создает серьезные трудности в их прогнозировании.

Песчано-глинистые части неокома и юры отделяет региональная покрышка позднеюрско-ранненеваланжинского возраста мощностью от 100 до 300 м и более.

Отложения нижне-среднеюрского подкомплекса (развиты на севере повсеместно, но залегают обычно на больших глубинах) вскрыты в пределах структур единичными скважинами и изучены относительно слабо, за исключением Новопортовского месторождения. Практически на всех площадях, где глубокими скважинами вскрыты породы комплекса, получены прямые признаки продуктивности юрских отложений. Важным критерием для поисков скоплений УВ является наличие в нижне-среднеюрском разрезе грубообломковыми, в то же время, очень слабо перекристаллизованными глинистыми и песчано-алевролитовыми толщами. В изучаемом районе залежи в нижне-среднеюрских отложениях открывались на п-ове Ямал (Новопортовское месторождение, пласты Ю1, Ю2, Ю3, Ю4, Ю5), Гыдан (Геофизическое месторождение, пласт Ю2) и Тазовском (Ямбургское месторождение, пласты Ю1, Ю4). Непромышленные притоки УВ получены на Парусовом (пласт Ю3), Северо-Парусовом (пласт Ю1) и Семаковском (пласты Ю3, Ю4) месторождениях.

Донорские отложения развиты на севере повсеместно, но залегают обычно на больших глубинах, с чем связана их слабая изученность глубоким бурением. Породы фундамента представлены глинистыми и кремнистыми сланцами, биотитовыми, а также известняками разной степени метаморфизма.

Перспективы нефтегазоносности палеоэозойских отложений связаны с корами выветривания фундамента, зонами распространения сильнотрешиноватых и кавернозных известняков. Зоны развития дыхтообразной тектоники, создающие благоприятные условия для развития коллекторов трещиноватого типа, также можно оценить по перспективным объектам поисков УВ в палеозойских отложениях.

Газовые залежи с низким содержанием конденсата в отложениях палеозой открыты на Новопортовском месторождении. Особый интерес представляют результаты исследования скв. 216 и 217, вскрывших карбонатные отложения. Так, в скв. 216 в интервале разреза 2940-3308 м из десяти опробованных интервалов получен газ (иногда с пластовой водой и нефтью) дебитом до 582,1 тыс. м³/сут на диффагме 20,2 мм. В скв. 217 в кровельной части карбонатов также получен приток газа дебитом 496,6 тыс. м³/сут на диффагме 16,2 мм. Открытые залежи не локализованы, их промышленный потенциал не определен.

В связи со слабой изученностью палеозойских отложений возникают серьезные трудности в прогнозировании перспективных объектов для поиска УВ.

Исходя из результатов анализа закономерностей размещения залежей УВ в ЗС Надым-Пуровской, Ямальской и Гыданской НГО можно сделать следующие выводы.

1. Сеноманские отложения региональны на всей территории Западно-Сибирской нефтегазоносной мегапровинции, однако в южной части п-ова Гыдан (вследствие выровненного рельефа структурной поверхности кровли сеномана) скопления газа отмечены только на двух (Миховское, Геофизическое) из шести рассматриваемых месторождений.

2. Аптский подкомплекс наиболее перспективен для поисков скоплений УВ в северных районах Ямальской и Гыданской НГО. Перспективы нефтегазоносности аптского подкомплекса снижаются в юго-восточном направлении в сторону Мессояхского порога вследствие сокращения количества зональных
глинистых покрышек в разрезе танопчинской и ярносской свит.

3. Неокомские отложения регионально продуктивны на территории Западно-Сибирской нефтегазоносной мегапровинции. Они отличаются ярко выраженной фациальной и литологической изменчивостью по разрезу и по площади. Размещение УВ в основном связано с литолого-фациональными условиями образования ловушек.

4. Ачимовская толша — один из наиболее сложных объектов разреза, особенностью которого является резкая литологическая изменчивость. Наиболее перспективным районом для поисков скоплений УВ в ачимовской толще изучаемого района представляется Надым-Пурская НГО.

5. Юрские отложения в северных районах Западно-Сибирской нефтегазоносной мегапровинции развиты повсеместно, но залегают на больших глубинах и относительно слабо изучены глубоким бурением. Важным критерием для поисков скоплений УВ является наличие в нижне-среднеюрском разрезе пространственно выдержанных, ритмично чередующихся глинистых и песчано-алевролитовых толщ.

6. Перспективы нефтегазоносности палеозойского комплекса связаны с корами выветривания фундамента, зонами распространения сильно трещиноватых и кавернозных известняков. В палеозойском комплексе вследствие его слабой изученности возникают трудности при прогнозировании перспективных объектов для поисков УВ.

Таким образом, рассматриваемая зона характеризуется развитием как многолежальных (типа Ямбургского и Новопортовского), так и одно-двухлежальных (типа Каменномысского, Обского, Тога-Яхинского и др.) месторождений. Не вполне понятна низкая продуктивность нижнелемовой толщи в ареале Обской и Тазовской губ, что связано, по-видимому, с техническими условиями газонакопления.

Список литературы

5. Огнев А.Ф. Особенности формирования месторождений газа и нефти в динамически активной зоне Мессояхского порога Обско-Тазовского мелководья Западно-Сибирского нефтегазоносного бассейна / А.Ф. Огнев, Н.А. Туренков // 8-я Международная конференция по освоению ресурсов нефти и газа Российской Арктики и континентального шельфа СНГ: сб. докладов. – СПб., 2007.