В.А. Скоробогатов, Н.Н. Соловьев

Сравнительный анализ условий нефтегазонакопления в Западно-Сибирском и Арабо-Персидском мегабассейнах

По данным различных источников, в земной коре выявлено от 570 до 620 осадочных бассейнов, выполненных умеренно дислоцированным осадочным чехлом, представленным терригенными, карбонатными, соленосными и реже вулканогенно-обломочными породами различного возраста и формационной принадлежности. Мощность неметаморфизованных осадочных пород в них изменяется от $1\div2$ до $18\div20$ км, площадь – от первых десятков тысяч до $3\div3,5$ млн км2. В 230 осадочных бассейнах открыты месторождения углеводородов (УВ), в связи с чем они характеризуются как нефтегазоносные.

Среди крупнейших (по площади, так и по объему осадочного выполнения нефтегазоносных бассейнов (НГБ) особое место занимают Арабо-Персидский (или Персидского залива) и Западно-Сибирский, контролирующие большую часть мировых разведанных запасов (как и начальных ресурсов) нефти и газа, поэтому их целесообразно определять как нефтегазоносные мегабассейны (НГМБ). Эти НГМБ характеризуются не только аномально высоким суммарным углеводородным потенциалом, но и существенно большим количеством открытых в них гигантских месторождений УВ, которые, собственно, и обеспечивают уникальность этих НГМБ. По масштабам углеводородного накопления с ними сопоставимы Западно-Канадский и Оринокский битумо-нефтегазоносные бассейны, но их потенциал определяется в основном запасами (ресурсами) тяжелых нефтей и битумов.

Вопросам изучения геологии и нефтегазоносности Западно-Сибирского и Арабо-Персидского НГМБ посвящено большое количество работ ведущих геологов-нефтяников России и зарубежных стран [1–15 и др.].

Первое крупное обобщение по геологии нефти и газа Западной Сибири было опубликовано в 1975 г. В дальнейшем особенности тектонического строения и развития нефтегазоносных структур Западной Сибири постоянно уточнялись в работах Ю.Т. Афанасьева, С.К. Барыкина, В.С. Бочкарёва, А.М. Бреухунова, Ф.Г. Гурари, В.И. Ермакова, О.Г. Жеро, Н.П. Запивалова, В.М. Ковылина, А.Э. Конторовича, Н.Я. Купина, В.С. Лазарева, В.П. Маркевича, К.И. Минулло, В.Д. Наливкина, И.И. Нестерова, Н.Н. Ростовцева, М.Я. Рудкевича, Ф.К. Салманова, Г.П. Сверчкова, В.А. Скоробогатова, В.С. Суркова, Н.В. Шаблийской, В.И. Шпильмана и многих других исследователей [6–8, 11, 12, 14 и др.].

Проблема оценки возраста фундамента Западно-Сибирской плиты до сих пор не имеет однозначного решения. Лишь на первых этапах доминировало представление о его преимущественно герцинском возрасте. Позднее стали появляться все более убедительные данные о гораздо более широком распространении фрагментов донорского основания с более ранним временем консолидации. Наибольший интерес представляют факты наличия в донорском разрезе обширных линз (или включений) неметаморфизованных терригоно-карбонатных (нижний и средний палеозой) и терригенных (верхний палеозой – триас) пород мощностью от $1\div2$-х до 7 км. Характерно, что зоны максимальных мощностей палеозойских отложений чаще наслаждаются эпицентрами мезозойского прогибания, т.е. крупнейшие отрицательные структуры Западной Сибири почти непрерывно развивались с середины палеозоя.
Суммарная площадь распространения доюрских осадочных и эффеузивно-осадочных образований составляет около 1,5 млн км².
Еще в 1961 г. В.С. Вышемирский подчеркивал, что уровень катагенеза органического вещества в осадочных породах палеозоя существенно не отличается от его преобразованности в отложениях базальных горизонтов мезозоя, однако этот вывод касается только отдельных зон на востоке мегабассейна. «Газовое дыхание» домезозойского разреза могло влиять на характер нефтегазоносности вышележащих отложений. С одной стороны, было бы опрометчиво обосновывать главнейшие причины преимущественной газоносности северных районов Западной Сибири, основываясь только на этом предположении. Однако и игнорировать возможность такого подхода не серьезных оснований.

В рельфах домезозойского основания Западно-Сибирская плита представляет собой обширную депрессию площадью около 3 млн км² (сужа и щель Карского моря). Собственно плитный комплекс (юра, мел, кайнозой) сложен морскими и континентальными, в том числе угленосными отложениями. Их мощность монотонно возрастает с юга на север, достигая в центральных районах плиты 4 км (реже более), а на севере – 8±10 км.

При тектоническом районировании в пределах плиты обычно выделяют внешний тектоническим пояс, занимающий около 45 % ее территории, и Внутреннюю (или Центральную) тектоническую область. Последняя включает Среднеобскую мегантиклизы (или Обскую террасу) и Ямало-Тазовскую мегантиклизы. Суммарная площадь крупных положительных структур, осложняющих мегантиклизы, достигает 40 % от общей площади. Они представлены сводами, мегавалами, валиами или гемивалии, а разделяющие их оптические структуры – впадинами, реже прогибами.

Глубина залегания доюрского основания в этой части региона изменяется от 2±2,5 до 4 км. Большинство выявленных месторождений нефти контролируется локальными структурами, осложняющими (с запада на восток) Красноленинск, Сургутский и Вартовский своды и Александровский мегавал. Контрастность структурно-морфологической дифференциации осадочного чехла существенно убывает вверх по разрезу.

Уровень диссипированности осадочного чехла в Ямало-Тазовской синклизозе более высоокий, однако общая площадь крупных положительных структур ниже (около 20 %), чем в Среднеобской мегантиклизы. В отличие от последний в ней явно преобладают линейные структуры: мегавалы, вали, гемивали и разделяющие их прогибы. Большинство из них выращено и в кайнофенийских отложениях. Локальные структуры, осложняющие вали и (или) мегавалы, контролируются в основном залежи газа.

Морфоструктура осадочного чехла в пределах внешнего тектонического пояса определяется системой моноклинолей, а также сопряженных преимущественно полузамкнутых положительных и отрицательных тектонических элементов.

В Западно-Сибирском НГМБ выявлено около 60 положительных структур I порядка (своды, мегавалы, мегавальные), более 400 структур II порядка (вали, куполовидные поднятия, впадины, прогибы) и около 5000 локальных брахантиклинальных структур. Как правило, они осложняют положительные структуры более высоких порядков и редко – прогибы и впадины. Площадь локальных структур колеблется от 3±10 до 500±1000 км² и реже более, амплитуда – от первых десятков до нескольких сотен метров.

За редким исключением наиболее крупные брахантиклиналы (площадью более 500 км²²) расположены во внутренних районах плиты и преимущественно (более 70 %) над дилицем Ямало-Тазовской мегантиклизы.

Важнейшей роль в формировании высокого аккумуляционного потенциала Западно-Сибирского НГМБ принадлежит мощной (до 800 м) туров-олигоценовой, преимущественно глинистой-кремнистой толще, обеспечивающей консервацию уникальных газовых залежей в кровле сеномана. Основные запасы газа на п-ове Ямал и сопредельной акватории Карского моря сосредоточены под нижнелейбискими глинами (зональная покрышка). Большая часть запасов нефти в пределах Среднеобской мегантиклизы размещается под верхненеокомским глинистым флюидоупором. Остальные покрышки и (или) линзы слабопроницаемых пород меньшей мощности и зонального или даже локального масштаба играют подчиненную роль, иногда обеспечивая лишь членение гидравлически единых скоплений УВ на ряд продуктивных пластов или пропластков.
Уникальные масштабы газонакопления в альб-сеноманском и неоком-апптом комплексах северных районов Западной Сибири связаны с высокой угленасыщенностью разреза. В значительной степени мощности валинг-сено-мской угленосной (субугленосной) толщи органического вещества, преимущественно гумусового типа, находится в оптимальном для интенсивного газообразования диапазоне катаенеза (Рк от 0,40 до 0,75 %).

Высокая концентрация нефти в центральных и западных районах Западной Сибири обусловлена реализацией генерационного потенциала, прежде всего баженовской свиты (верхняя юра), где содержание сапропелевого органического вещества изменяется от 5-7 до 15-17 %. Его повышенное и высокое содержание в диапазоне отложений от апта до нижних юрских пород обеспечило большие масштабы битумообразования и нефтенакопления в природных резервуарах неокома и юры Среднего Приобья и Надым-Пур-Тазовского региона (НПТР). На севере Западной Сибири процессы нефтенакопления были подчинены мощным газообразованием и газообразованием накоплением практически во всем интервале разреза от неокома до триаса.

Терригенные коллекторы сеномана, нижнего мела и верхней юры характеризуются хорошим и очень хорошим фильтрационно-емкостными свойствами, а глинистые покрышки сохраняют экранирующие свойства до глубин 5 км и более. Открыта пористость песчаников в основном составляет 20±30 %, проницаемость – от первых сотен мД до 1-2 Д.

С начала ведения нефтегазоносных работ (1953 г.) в Западно-Сибирском НГМБ открыто 896 месторождений УВ. Среди них преобладают нефтяные (640) и нефтегазоконденсатные (111), тогда как газовых и газоконденсатных всего 115 (табл. 1).

По состоянию на начало 2012 г. суммарные начальные разведанные геологические запасы газа и жидкости УВ всех этих месторождений оценивались в 123 млрд т у.т., в том числе свободного газа – в 51 трлн м³.

Более половины (~ 54 %) разведанной части углеводородного потенциала приходится на 19 сверхгигантских месторождений, запасы каждого из которых превышают 1 млрд т у.т. (табл. 2). Большая часть запасов свободного газа разведана в сеноманском и апт-альбском комплексах на небольших (700÷1600 м) глубинах, нефти – в неокомском и юрском комплексах на глубинах 1500÷3300 м. Все крупнейшие газосодержащие месторождения открыты в северных, а более 80 % нефтяных (нефтегазоконденсатных) – в центральных и западных районах Западно-Сибирского НГМБ. Схема размещения газовых гигантов на севере мегапровинции показана на рис. 1.

Таблица 1

Распределение месторождений УВ Западной Сибири (суша и шельф) по типу (на 01.01. 2012 г.)

<table>
<thead>
<tr>
<th>Регион</th>
<th>ЯНАО</th>
<th>ХМАО*</th>
<th>Юг Тюменской области</th>
<th>Новосибирская область</th>
<th>Омская область</th>
<th>Тюменская область</th>
<th>Свердловская область</th>
<th>Красноярский край (за исключением бассейна р. Енисей)</th>
<th>Западная Сибирь</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всего, в том числе:</td>
<td>236</td>
<td>482</td>
<td>37</td>
<td>8</td>
<td>3</td>
<td>115</td>
<td>5</td>
<td>12</td>
<td>898</td>
</tr>
<tr>
<td>газовые</td>
<td>24</td>
<td>19</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>газоконденсатные</td>
<td>48</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>–</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>газонефтяные</td>
<td>10</td>
<td>16</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>нефтегазовые</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>нефтегазоконденсатные</td>
<td>71</td>
<td>22</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>16</td>
<td>–</td>
<td>2</td>
<td>111</td>
</tr>
<tr>
<td>нефтяные</td>
<td>80</td>
<td>422</td>
<td>35</td>
<td>7</td>
<td>2</td>
<td>92</td>
<td>2</td>
<td>–</td>
<td>640</td>
</tr>
</tbody>
</table>

* Оценочные данные.
Таблица 2

Начальные геологические запасы газа и нефти сверхгигантских и уникальных месторождений Западной Сибири

<table>
<thead>
<tr>
<th>№</th>
<th>Суммарные запасы нефти и газа, т. у.т.</th>
<th>В том числе</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>свободный газ, трлн м³</td>
<td>нефть, млрд т</td>
</tr>
<tr>
<td>1</td>
<td>13,7</td>
<td>12,2</td>
</tr>
<tr>
<td>2</td>
<td>7,8</td>
<td>0,2</td>
</tr>
<tr>
<td>3</td>
<td>7,7</td>
<td>7,3</td>
</tr>
<tr>
<td>4</td>
<td>5,51</td>
<td>0,01</td>
</tr>
<tr>
<td>5</td>
<td>4,92</td>
<td>4,9</td>
</tr>
<tr>
<td>6</td>
<td>4,0</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>4,0</td>
<td>3,6</td>
</tr>
<tr>
<td>8</td>
<td>2,6</td>
<td>0,2</td>
</tr>
<tr>
<td>9</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>10</td>
<td>1,7</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>12</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>13</td>
<td>1,6</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>1,6</td>
<td>0,1</td>
</tr>
<tr>
<td>15</td>
<td>1,3</td>
<td>1,0</td>
</tr>
<tr>
<td>16</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>17</td>
<td>1,2</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>1,2</td>
<td>–</td>
</tr>
<tr>
<td>19</td>
<td>1,1</td>
<td>–</td>
</tr>
<tr>
<td>Итого</td>
<td>66,73</td>
<td>36,31</td>
</tr>
</tbody>
</table>

По мнению ряда исследователей [4, 6, 10, 14 и др.], благоприятные условия реализации всех процессов, составляющих онтогенез нефти и газа, обусловлены следующими особенностями его формирования и строения:

1) очень большим объемом мезозойско-кайнозойского осадочного выполнения, в котором широко распространены:
 - угленосные и бутикунозные образования, служившие мощными источниками УВ;
 - природные резервуары, обеспечивающие возможность крупномасштабного перемещения УВ и хорошие условия их консервации;

2) наличием мощной (500–900 м) региональной покрышки туран-олигоценового возраста, а также ряда областных и зональных покрышек в диапазоне от верхней юры до альба (50–300 м);

3) большой емкостью ловушек антиклинального типа, расположенных в пределах зон генерации УВ, что обеспечивало минимальные потери при миграции и аккумуляции;

4) активизацией в новейшее время всех процессов, составляющих онтогенез нефти и газа, до сих пор обеспечивающей превышение темпов доформирования месторождений над темпами их разрушения;

5) нарашиванием в отдельных зонах осадочного чехла линий терригенно-карбонатных и угленосных образований триаса и палеозоя, которые могли служить дополнительным источником преимущественно газообразных УВ;

6) сравнительно высокой плотностью малоамплитудных разрывных нарушений и линейных зон трещиноватости пород, повышавших отток УВ из материнских пород (глин и углей) и зон генерации;

7) незначительным расходом УВ на рассеивание в окраинных зонах раскисления недр.

Особенности строения и негазоносности НГМБ Персидского залива рассматриваются в работах М.М. Алиева, А.А. Бакирова, З.Р. Бейдуна, И.В. Высоцкого, В.И. Высоцкого, Г.В. Данингтона, В.А. Демидова, А.Н. Дмитриевского, И.П. Жабрева, А. Забанбарг, М. Камен-Кив, И.А. Клауса, Х.Д. Клеме, А.А. Ковалева, К.Н. Кравченко, Дж.Б. Муди, В.Б. Оленина, Н.Н. Соловьева, Д.А. Холмгrena, М.Т. Хэлбути, Дж. Штеклина и многих других исследователей [1–3, 5, 9, 10, 12, 13, 15–18].

По состоянию на начало 2012 г. в ареале Персидского залива и сопредельной территории Аравийского п-ова выявлено 530
Рис. 1. Схема размещения газовых месторождений-гигантов на севере Западно-Сибирской НГМП

Начальные запасы газа, млрд м³:
- 300–1000
- 1000–3000
- 3000–12000
месторождений УВ, 440 из которых являются нефтяными и нефтегазоконденсатными (табл. 3). Суммарные начальные доказанные извлекаемые запасы УВ в этом регионе составляют около 230 млрд т у.т., в том числе нефти и конденсата – 150 млрд т у.т., а разведанные геологические запасы, по-видимому, не менее 470–500 млрд т у.т. Следовательно, по уставленным к настоящему времени масштабам нефтегазоносности, запасы УВ в Западно-Сибирском НГМБ, тогда как ресурсы свободного газа сопоставимы. Кроме того, обрашает на себя внимание тот факт, что суммарные начальные разведанные запасы наиболее крупных газосодержащих месторождений в рассматриваемых бассейнах практически одинаковы (табл. 4).

Схема размещения месторождений УВ в центральной части Арабо-Персидского мегабассейна приведена на рис. 2.

Таблица 3

Месторождения УВ Ближнего и Среднего Востока (по данным В.И. Высоцкого)

<table>
<thead>
<tr>
<th>Страна</th>
<th>Общее число</th>
<th>Н и НГК</th>
<th>Г и ГК</th>
</tr>
</thead>
<tbody>
<tr>
<td>Иран</td>
<td>153</td>
<td>106</td>
<td>47</td>
</tr>
<tr>
<td>Саудовская Аравия</td>
<td>108</td>
<td>87</td>
<td>21</td>
</tr>
<tr>
<td>Ирак</td>
<td>90</td>
<td>83</td>
<td>7</td>
</tr>
<tr>
<td>ОАЭ</td>
<td>75</td>
<td>64</td>
<td>11</td>
</tr>
<tr>
<td>Катар</td>
<td>19</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Прочие* (Сирия, Бахрейн, Кувейт и др.)</td>
<td>105</td>
<td>83</td>
<td>22</td>
</tr>
<tr>
<td>Итого</td>
<td>550</td>
<td>440</td>
<td>110</td>
</tr>
</tbody>
</table>

* Оценочные данные на 01.01.2012 г.

Таблица 4

Сопоставление начальных разведанных запасов газа гигантских, сверхгигантских и уникальных газосодержащих месторождений Западной Сибири и Ближнего Востока

<table>
<thead>
<tr>
<th>Западная Сибирь</th>
<th>Ближний Восток</th>
</tr>
</thead>
<tbody>
<tr>
<td>месторождения</td>
<td>начальные разведанные запасы газа, трлн м³</td>
</tr>
<tr>
<td>Большой Уренгой</td>
<td>11,5</td>
</tr>
<tr>
<td>Ямбургское</td>
<td>6,9</td>
</tr>
<tr>
<td>Бованенковское</td>
<td>4,4</td>
</tr>
<tr>
<td>Заполярное</td>
<td>3,8</td>
</tr>
<tr>
<td>Медвежье</td>
<td>2,3</td>
</tr>
<tr>
<td>Хараасаевское</td>
<td>1,3</td>
</tr>
<tr>
<td>Южно-Тамбейское</td>
<td>1,0</td>
</tr>
<tr>
<td>Крупненовское</td>
<td>1,0</td>
</tr>
<tr>
<td>Северо-Уренгойское</td>
<td>0,8</td>
</tr>
<tr>
<td>Харамурское</td>
<td>0,8</td>
</tr>
<tr>
<td>Комсомольское</td>
<td>0,8</td>
</tr>
<tr>
<td>Северо-Тамбейское</td>
<td>0,7</td>
</tr>
<tr>
<td>Ямсовское</td>
<td>0,7</td>
</tr>
<tr>
<td>Юбилейное</td>
<td>0,6</td>
</tr>
<tr>
<td>Юрхаровское</td>
<td>0,6</td>
</tr>
<tr>
<td>Салмановское</td>
<td>0,5</td>
</tr>
<tr>
<td>Каменномысское-море</td>
<td>0,5</td>
</tr>
<tr>
<td>+ 10 месторождений с запасами 0,3–0,5 трлн м³ каждое</td>
<td></td>
</tr>
<tr>
<td>Всего</td>
<td>42,0</td>
</tr>
</tbody>
</table>
Рис. 2. Месторождения центральной части Арабо-Персидского НГМБ (по данным В.И. Высоцкого, 2010 г.)

Осадочный мегабассейн Персидского залива расположен на стыке древней платформы и альпийского подвижного пояса. Его фундаментом служат образования архейско-протерозойского возраста, глубина залегания которых в пригексанкинальной части достигает 12÷15 км. Осадочный чехол представлен отложениями фанерозоя, накапливавшимися преимущественно в морских условиях без существенных перерывов. Разрез допермского палеозоя образован преимущественно терригенно-ориферными породами, а перми, юры, мела, палеоиза и нижнего миоцена – преимущественно карбонатными. Венчается разрез соленосной толщи среднего миоцена мощностью до 1 км, перекрытой в основном терригенными образованиями позднего неогена и антропогена.

Особенности геологического строения осадочного чехла НГМБ Персидского залива обсуждались во многих работах [1, 5, 9, 10, 16, 18]. В отличие от Западной Сибири, где с конца палеозоя преобладал умеренный гумидный климат, на территории Ближнего Востока в течение практически всего фанерозоя господствовал засушливый аридный климат. На обширных пространствах открытого шельфа и лагун осадконакопление происходило, как правило, без сколько-нибудь существенного привноса обломочного материала, из-за чего осадочный чехол региона был образован преимущественно карбонатными и эвапоритовыми осадками.

В рельефе фундамента площадь бассейна Персидского залива составляет почти 3 млн км². Он имеет асимметричное строение: обширное юго-западное платформенное крыло – довольно пологое, а сравнительно узкое северо-восточное приорогенное – крутое и интенсивно дислоцированное. В результате поддвиги Аравийской плиты под ороген...
северо-восточный склон бассейна был частью редуцирован. Он осложнен большим количеством антиклинальных зон, образованных системами антиклинальных складок северо-западного простирания. Пологий платформенный склон разделен на ряд поднятий и проявлений (или впадин), занимающих преимущественно поперечное (по отношению к простиранию горной системы Загроса) положение.

Формирование антиклинальных структур происходило в условиях проявления вертикальных и горизонтальных сил. Роль последних усиливалась с приближением к альпийской складчатой системе. На платформенном склоне бассейна значимым фактором структурообразования местам становился соляной диапиризм. Большинство крупных структур отличается унаследованным от позднего палеозоя характером развития, причем многие антиклинальные структуры активно развивались до настоящего времени.

Основными нефтегазогенерирующими комплексами в НГМБ Персидского залива являются глинистые образования тряса, средней юры, мела и палеогена, глинистые известняки верхней юры, гранититовые сланцы силура и, возможно, ордовика. Наплывшими генерационными свойствами обладают глинистые известняки и мергели келловей-оксфорда (святи ха-нифа и тувайк), в которых содержание сапропелевого ОВ достигает 12%.

В НГМБ Персидского залива (по сравнению с Западно-Сибирским) процессами интенсивного битумо- и газообразования был охвачен значительно больший стратиграфический и физический объем карбонатных и терригенных пород на протяжении большей части фанерозойского времени. В разрезе кайнозоя, мезозоя и палеозоя развито несколько генерационных доминант-комплексов с практически чисто сапропелевым органическим веществом существенно лучшего качества, чем в терригенно-кремнистой баженовской свите (в карбонатах состав сапропелевого вещества чище, «благороднее», чем в глинах, в силу ряда причин). Его уникальная нефтеносность обусловлена грандиозными масштабами битумообразования во всем мегаобъёме фанерозойского осадочного чехла. Только верхненеозойские известняки святи ханифа (раскисленное органическое вещество сапропелевого типа, содержание – 6÷10%) продуктировали около 300 × 108 т битумоидов, в сумме же масса генерации по всем нефтенефтяным толщам оценивается не менее чем в 1,8÷2,0 × 1012 т с интегральным коэффициентом аккумуляции нефти для мегабассейна в целом до 30÷35% (из-за малых потерь нефти при вторичной миграции на небольшие расстояния).

Сравнение состава и свойств нефтей двух мегабассейнов показывает следующее.

Нефти Западно-Сибирского региона чрезвычайно разнообразны по физико-химическим свойствам и углеводородному составу легких фракций – от тяжелых, нафтенового основания (семеновские и альбские залежи северных районов), до средних по плотности (неоком, юра) и легких (менее 0,81 г/см³ в отдельных залах юрского комплекса). Они четко различаются прежде всего по содержанию серы и твердых алкановых УВ (парафины): в центральных районах нефти – сернистые (0,7÷1,3 %, редко до 1,9 %), но с невысоким содержанием парафина (2÷4 %), на западе – бессернистые, но и мало-парапановые, на севере – бессернистые (менее 0,3 %), но высокопарафиновые (5÷15 %).

Геохимические нефти Западной Сибири диагностируются как морские и озерные сапропелевые (по типу материнского органического вещества) в Среднем Приобье и на западе мегабассейна (в ареале Красноленинского свода) и как континентальные (преимущественно гумусовое органическое вещество) на севере и юго-востоке мегабассейна.

Состав свободных газов в Западной Сибири четко определяется глубиной залегания скоплений УВ: на малых (0,5÷1,5 км) глубинах – газы метановые (СН4 от 97 до 99 %), бескислородные. С глубиной содержание метана снижается до 85÷82 %, но увеличивается содержание тяжелых углеводородных газов (до 12÷15 %) и конденсата (10÷350 г/м³). Все газы бессернистые.

В иранской части Месопотамского мегапогреба в породах кайнозоя и верхне-го мела локализованы средние по плотности (0,840÷0,860 г/см³) нефти, среднелесистые (1,5 % с повышенным (5,0÷6,7 %) содержанием парафина и мальм (1÷3 %) – асфальтенов.

Нефти Кувейта (месторождение Бурган и др., верхняя юра – нижний мел, святи Ямама и Бурган) отличаются повышенной плотностью (0,860÷0,870 г/см³), сернистые (в среднем 2,5 %), парафиновые (5,4 %), с малым содержанием смол и асфальтенов (в сумме менее 10 %).

Верхненеозойские нефти Саудовской Аравии (месторождения Гавар, Абкайк и др., свита араб) утяжеленные (0,860÷0,880 г/см³), сер-
нимальные (от 0,9–1,3 до 3,9 %, обычно около 2,0–2,5 %), парафиновые (3–5 %). Все нефти Ближнего Востока имеют генетические корни в морских терригенно-карбонатных породах с гумусово-сапрелевым (в кайнозое) и существенно сапрелевым органическим веществом (в объеме грунты и мела).

Практически все газы месторождений НГМБ Персидского залива содержат сероводород (обычно 0,2–0,5 %, редко до 1,0–1,5 %).

В Западно-Сибирском НГМБ зоны преимущественного нефте- и газонакопления разобщены по площади: основные нефтесодержащие месторождения связаны с верхнемезозойскими и неокомскими отложениями центральных и западных районов, а основные газосодержащие месторождения – с нижнемеловыми и сеноманскими отложениями северных районов мегабассейна. В НГМБ Персидского залива такое разобщение происходит по вертикали: газ связан в основном с пермскими, а нефть – с юрскими, меловыми и олигоцен-миоценовыми отложениями.

К числу главнейших особенностей разви́тия и строения складчатого борта [1–3, 5, 9, 10, 15, 18], важных для понимания формирования нефтегазоносности мегабассейна Персидского залива, относятся:

• залегание Загросского геосиклинимального прогиба на платформенном основании и отсутствие сколько-нибудь существенных различий между формациями перикратона и складчатого борта;

• сравнительно плавный переход предгорного прогиба в ороген и увеличение удельной плотности антиклинальных складок, контролирующих высокоемкие ловушки УВ;

• отсутствие проявлений орогенного магматизма и интенсивного метаморфизма;

• присутствие в разрезе эвапоритовой толщи среднего миоцена, не потерпевшей свойств покрышки даже в сводах крупных и гипсометрически высоких структур;

• хорошая изолированность палеозойского газогенного (и газоносного) этапа благодаря развитию триасовой соленосной толщи, что практически исключило возможность подавления процессов нефтенаакопления в мезозойско-кайнозойских отложениях;

• высокая новейшая тектоническая активность приглубинно-океанической части бассейна, обеспечивающая тектонодинамическое усиление процессов нафтогенеза.

Специфика нефтегазонакопления на платформенном борту НГМБ Персидского залива в значительной мере определялась ортогональной или диагональной структурной зональностью по отношению к генеральному простиранию складчатого сооружения Загроса и проникновением погребенных продолжений платформенных структур в пределы Месопотамского прогиба.

Особенно важная роль в формировании крупнейших месторождений УВ отводится Центрально-Аравийскому поднятию, занимающему поперечное положение относительно генерального простирания предгорного прогиба. Подавляющее большинство из них размещается либо непосредственно в его пределах, либо на генетически связанных с ним валах и гемивалах в акватории Персидского залива.

Выполненый краткий сравнительный анализ условий нефтегазонакопления в Западной Сибири и на Ближнем Востоке позволяет отнести к числу факторов, обусловивших уникальную концентрацию в их недрах нефти и газа (помимо упомянутых выше), следующие:

• аномально высокую суммарную ёмкость коллекторов внутри ловушек антиклинального типа, особенно в наддинефовых элементах мегабассейнов;

• высокий уровень обогащения отложений разного возраста различным по типу и катагенетической преобразованности органическим веществом;

• последовательно монотонно нарастающие в стратиграфическом разделении генерации УВ;

• весьма благоприятную структурно-морфологическую сопряженность зон генерации и зон аккумуляции УВ;

• повышенный уровень позднеаллельского тектонодинамического усиления процессов онтогенеза УВ в ареале контакта Аравийской и Иранской плит и в меньшей степени – при инверсии тectонических движений в Западной Сибири (в неогеновом времени);

• минимальные масштабы расформирования месторождений во внутренних районах и удаления УВ за пределы ареала нефтегазоносности;

• нахождение мегабассейнов на прогрессирующей стадии развития.
Список литературы